设想双胞胎约翰(John)和乔(Joe)刚出生就被分开,且都生活在一个痴迷篮球运动的地方。相同的基因使他们比同龄人长得更高、发育更快。约翰在一个城市上学,比其他人更热衷打篮球,练习地更多,球技也更好,引起了学校年级教练的注意,于是得以进入球队,到高中后继续发展,在那里得到了职业化训练。乔在几百英里外的另一个城市上学,由于他的基因与约翰相同,也比同龄人个头高、发育快,因此他很可能有着与约翰近似的生活轨迹。
换句话说,随着他们所处的环境越来越有利,刚出生时不明显的基因优势就决定了他们最终的篮球运动水平——进行更多练习、参加团队比赛、受到专业化训练等强有力的环境因素突显了基因的作用。
现在设想一个孩子的天资要比另一个高一些,他们中的哪一个会喜欢上学、经常受到赞扬、喜欢泡图书馆、在最优秀的班级学习,最后考入大学?如果这个孩子有一个未曾谋面,但经历相似的孪生兄弟,如何解释他们成年以后相似的IQ水平?相同的基因并非独立作用,而是能够共同选择相似的环境,这将是一个难解之谜。
控制了作用于能力和环境之间的强烈反馈回路(feedback loop),基因便可以从中获利。一种基于基因的能力优势会带来有利的学习环境;而良好的学习环境会放大学习能力的优势,使之得以进入最优秀的班级,而这样的班级又为他提供了更好的学习环境;这一环境再一次放大能力优势,为他顺利进入优秀大学铺平道路。这些反馈回路影响着一个人的命运,因此我和我的合作者美国布鲁金斯学会(Brooking Institution)的威廉·T·狄更斯(William T。 Dickens)将它们称为“个体乘数”(individual multiplier)。
同样还存在“社会乘数”(social multiplier)。为满足19世纪末20世纪初工业革命的需要,社会教育程度不断提高。当中学教育开始普及,每个渴望跻身中产阶级的人都想获得高中文凭;当高中文凭已经普及,大家又开始追求大学文凭。经济发展缔造了一个中产阶级,他们希望能够更明智地激励孩子;能胜任需要独当一面的高薪工作;能够享受需要更高认知技能的闲暇活动。没人愿意被看成是不称职的父母,不适合晋升的员工,无聊乏味的同事。每个人都不断提高个人能力来应对新的社会环境,这推动社会平均水平向更高的方向发展;人们继续对新环境作出反应,进而继续将平均水平推向更高。如此反复的结果就是:认知技能仅经过一代人就大幅上升。
人脑体积的增长或由200万年前恶劣的生存环境导致。一项新研究指出,人脑之所以这么大,主要与生态挑战有关,而不是之前认为的社会挑战人类大脑的白质体积多达我们的祖先、生活在300万年前的南方古猿的三倍。