麻省理工学院的研究者在网站(moralmachine.mit.edu)上根据人们自己选择的数据类型,测试他们在机器即将做出决定的情况下表现出的道德直觉。
保护不知情权权更激进——也可能更有效——的方法是第一时间防止数据被收集。2017年,德国做出了一项开创性的举措,立法禁止自动驾驶汽车通过种族、年龄和性别来识别道路上的人。这意味着汽车将无法通过这些类别的数据来做出驾驶决策,尤其是在事故不可避免时需要做出的决策。
基于相同的思维方式,欧盟推出了新的《通用数据保护条例》(General Data Protection Regulation,GDPR),并于2018年5月生效。该条例规定,只允许公司在提供明确的指定服务时,收集和存储必需的最少量数据,并且获得客户对其数据使用方式的同意。这种对数据获取的限制可能也会阻止二级推理。但《通用数据保护条例》的一个重要局限是,公司可以为自己设定非常宽泛的目标。例如,如今已经关门的剑桥分析(Cambridge Analytica)公司的明确目标是评估用户的个性,因此在技术上,它对Facebook数据的收集符合《通用数据保护条例》的规定。同样的,只要用户同意——许多人即使在奖励相当微薄的情况下也会同意分享自己的数据——《通用数据保护条例》对数据和给定服务之间一致性的关注就无法排除道德上有问题的数据类别,也不能完全阻止公司从数据中介那里购买被排除的数据。研究人员发现,麻省理工学院的一些学生会分享他们朋友的联系数据,只为了获得一小片披萨。显然,我们还需要更多的限制手段,但究竟需要多少呢?
美国程序员、自由软件活动家理查德·斯托曼(Richard Stallman)说:“利用数据来害人的方法太多了,以至于唯一安全的数据库就是从未被收集过的数据库。”然而,如果对数据采集的限制过于严厉,又可能会阻碍人工智能的发展,并减少我们从中获得的收益。
清华北大人工智能 清华和北大在本科生中同步启动人工智能专业人才的培养。人工智能班是清华交叉信息研究院中的特设班级,北京大学工学院开始重点筹建“机器人工程”本科专业