Brian Skinner 博士对此表示,“数据出现的这一特征在我的认知内史无前例,而且并没有明显的理论能够解释。”
如今这篇论文,从标题上看注定不会是一篇平常的论文,然而登出大半个月后,学术圈里出现了截然不同的两种声音。难道这又是一次“狼来了”的作秀,还是里面另有隐情?
路漫漫其修远兮
事实上,超导现象第一次被发现已经是一个世纪之前的事情了。
像很多科学现象被发现的过程一样,超导现象也是在不断改进和提升技术的过程中被偶然发现的。20世纪初期,欧洲的机械工业化已经发展到了相当高的水平。当时世界上各个实验室都力图实现将沸点很低的氦气液化。1911年,莱顿大学的卡末林•昂内斯(H.KamerlinghOnnes)成功地将氦气液化到4.2K(-269°C),这为他研究物质在极低温度下的性质提供了方便,也是在这个时候,他偶然发现了水银的超导现象。这个发现为他赢来了两年后的诺贝尔物理学奖,同时也开启了科学家探索超导体的热潮。

图|卡末林•昂内斯(右)和他的实验员盖芮特灢菲立姆(左)于1911年在世界上首台氦液化器旁的照片
1980年代之前,超导的研究还集中在单元素金属和多元合金中。通常称这些金属或金属合金的超导体为常规超导体,这些材料包括水银,铝,铅和其它金属合金如铌锡,铌钛和铌锗合金。它们的临界温度Tc(即从导体转变为超导体的温度)在20K以下,这个温度和液态氢的沸点差不多。
彼时,超导转变温度太低,需要昂贵的液氦设备,科学家努力探索提高超导临界温度的途径。只是历史的发展总是一样,在一件标志性事件发生之前,人类的想像力总是受限,金属类的超导似乎并不能满足人们对高温超导的期望。

图|超导体的转变温度随被发现的时间的关系(来源:此次论文)
这一件标志性的事件发生在1986年。
IBM 苏黎世研究院的德国科学家柏诺兹(J.Georg Bednorz) 和缪勒 (Karl A.Muller) 科学家对一种陶瓷材料已经研究了很久,这一年年底,他们发现钡镧铜氧化物(BaLaCuO 或 LBCO)在 33K以下表现出了超导的特性。
现在来看,这个临界温度比它的金属前辈并没有高出多少,但是在那个年代已经是很高的温度了,而且突破了液氢的沸点,从此便可以用更廉价方便的液氮来降温。这两位科学家次年便被授予了诺贝尔物理学奖,这是为数不多的几次诺奖被授予了新的发现,可见这次高温超导的重要性。
这是一个伟大的发现,它开创了高温超导体的井喷时代。在随后的十年里,陆续有新的铜氧化物在高温下表现出超导特性,临界温度从最开始的33K一路升到了98K(YBaCuO)。1993年,汞钡钙铜氧系统(HgBaCaCuO)的临界温度达到了最高的138K(常压),在高压下(30万个大气压)甚至可以达到164K。而迄今为止最高的记录是2015年的203K,值得注意的是,这一记录保持者不是铜氧系统,而是高压下的锍化氢系统。
虽然203K(-70°C)比南极温度还要低上那么一点点,但是它极大激发了人们的想像。南极已经到了,赤道还会远吗?这些高温超导中是否可以找到一些室温超导的蛛丝马迹呢?
超导本质上是一个量子现象。1957年,Bardeen、Copper和Schrieffer提出著名的BCS理论,对这一现象做了很好的解释。晶体的晶格振动往往以声子的形式呈现,电子与声子的相互作用可以产生一种“胶水”,使本来相互排斥的电子互相吸引,两两成对,这些配对的电子被叫做库珀对(Cooper)。当材料的温度降低到临界温度以下时,所有电子库珀对都处于有序的相干的基态,它们像液体一样,共同从导体中穿过,与晶格之间不再发生散射。宏观上看,电子就在导体中无障碍传输了。而临界温度的存在,是因为较高温度下的晶格振动对库珀对造成了破坏。三人因此理论获得了1972年的诺贝尔物理学奖。

图|“BCS理论”创立者——巴丁&库珀&施里弗
三维量子霍尔效应 复旦大学物理学系修发贤课题组在拓扑半金属砷化镉纳米片中观测到了由外尔轨道形成的新型三维量子霍尔效应的直接证据,迈出了从二维到三维的关键一步。