那么,Pandey的团队是在什么样的实验中发现室温超导的呢?
这个实验说简单也简单,他们将直径为1nm的银颗粒嵌入到了金的网格中,并将这种混合物制备成了直径为10-20纳米的颗粒。值得注意的是,论文只提及了制作这种混合物的方法叫化学烧结法,对其详细过程并没有作详细描述。这些纳米颗粒进而再被制成薄片,附在电极上面,以方便测量其电阻。
随着温度的降低,电阻刚开始并没有什么显著的变化,但是当温度降低到230-240K的区间时,电阻一下子从0.7欧降到了100毫欧。报告中说由于仪器精度的限制,他们推测实际的测量值可能还要更低。这意味着每单位长度的电阻将小于0.1纳欧,比普通金银的电阻整整低两个数量级。Pandey估计了临界温度在236K(-37.15°C)附近。临界温度随外磁场的升高而降低,也符合超导体的特性。


图|电磁特性随温度的变化。左为电阻,右为体积磁化率。(来源:此次论文)
在抗磁性方面,Pandey测量了材料的体积磁化率随温度的变化。发现它在临界温度附近从零降到了-0.06。这个值离理想超导体的-1还差得很远,不过研究人员给出了一个理由,纯度不够。等效地说材料有6%的区域是超导。
“这个实验做得很干净且有说服力”,数学科学研究所的GanapathyBaskaran教授说,“对于粒状超导来说,10%的超导占比已经不低了。”
物理“圣杯”的争议:夸大其词?数据异常?
目前为止,236K的临界温度离室温还有一段距离,Pandey在论文中仅仅提出了达到室温的一种可能性:降低材料中金的比例。在他们声称的另一项研究中,一块含有较少金成份的样品在温度降到320K(46.85°C)时,其电阻骤降了三个数量级。这个温度已经要比赤道上很多地方的温度要高了。该样品的体积磁化率为-0.037,也属于完全抗磁的范畴。
不过,很多实验物理学家指出,这些证据最多指向了室温超导的可能性,并不能用为发现室温超导的直接证据。
回到这次的研究上,关于为什么选择金和银做为素材,Pandey仅仅在论文中说:“本着一种去寻找非声子模型的目的,我们才把注意力转移到用金和银制成的纳米结构的。”面对更多的提问,Pandey选择了缄默。众多理论物理学家对他的回答采取了一种宽容的态度:“他们用这种材料肯定有其自身的原因,我相信在论文被接受发表之后,他们肯定会透露更多的细节的,”Shenoy说。
Ramakrishnan已经开始动员印度科学家研究Pandey实验中的这种金银纳米结构了。“我们还要让化学家们参与进来,因为他们更懂得如何去制备这种纳米材料,而论文的作者也没有提供有用的细节。另一方面,物理学家还要研究这个结构的其它电磁性质,以及光学性质。我确信,世界上已经有好几个研究组着手研究了。”
但是,在理论物理学家们的支持论调下,Pandey的真正同行――实验物理学家――却显得更加严谨。一位不愿透露姓名的超导实验物理学家指出,实验的数据不完整,“论文标题是室温超导,而数据却只支持236K的超导。是这更像是一项尚未完成的工作,除非他们给《Nature》杂志提交了更完整的数据。”实验所能达到的测量精度则更让他纠心。“测量精度最好能达到1毫欧(1e-3欧),也就是说压降精度要达到1纳伏(1e-9伏)。磁化率的数据也需要更精确。”
他还指出实验缺乏一项关键数据――场冷却数据。这项数据在实验者先打开测量磁场后将样品冷却时获得。这项数据可以帮助计算出准确的超导区域占比,从而与磁化率进行交差验证。
此外,还有对研究中数据质疑的声音出现。 8 月 10 日,一篇麻省理工学院 Brian Skinner 博士的文章对数据提出了疑问。这篇文章已提交在 arxiv预印本网站上。
Brian Skinner 指出,研究中的两组数据十分奇特,下图为两组数据的放大图。该图描述了样品磁化率随温度的变化函数,是这项超导研究的关键数据。可以看出,图中蓝色部分和绿色部分的数据构成完全相同的形状,而只是位置向下移动。

图|原研究超导率函数图的放大图(来源:ArXiv)
三维量子霍尔效应 复旦大学物理学系修发贤课题组在拓扑半金属砷化镉纳米片中观测到了由外尔轨道形成的新型三维量子霍尔效应的直接证据,迈出了从二维到三维的关键一步。