如果是了解可控核聚变的朋友,可能会想到另一个更有技术含量的比喻。可控核聚变有两条途径,磁约束和惯性约束。我们平时经常看到新闻的EAST、ITER等托卡马克属于磁约束,而激光打靶属于惯性约束。2022年12月,美国国家点火装置(NIF)实现了一个里程碑,能量输出超过了输入。然而,这意味着惯性约束聚变能用来发电了吗?其实还差得远。原因有很多,其中之一就是激光打靶是不连续的,聚变反应时间只有几纳秒,而准备一次打靶却要一天(美国NIF激光聚变“点火”成功,聚变电站还远吗?|DrSHI观科技)。这比“一曝十寒”还夸张,是“纳秒曝一天寒”,所以总的效率非常低,离实用还很远。
而相比之下,GPU的算力就是真实的,它确实能连续一直跑,跑到芯片发烫,人人都能听见风扇的声音。GPU应用时,会有配套的计算机系统、应用程序、CUDA驱动支持,有时需要上百G的HBM3快速存储,这都是为了连续处理海量数据。
另一个指标是与能耗相关的。ACCEL几乎不用能量,只有激光、SRAM用一点,能耗指标非常优秀。论文中给出的能耗指标是74800TOPS每瓦,这就是新闻中提到的“能效提升四百万倍”。
同样的道理,这种说法也是很误导的。这是因为ACCEL处理整个流程中的一步几乎不用能量,而不是ACCEL真用了与CPU或GPU相当的能量,完成了四百多万倍的运算。一个比喻是,一只蚂蚁几乎不用能量就能爬1米,能耗效率比人要高多了。但是人可以把10斤重的箱子提起来,蚂蚁却不可能做到。
最后,我们来总结一下。清华ACCEL芯片融合了光电的特性,是非常巧妙的芯片架构,技术指标优秀,将光计算的潜力进一步展示。所以这个工作发表在《自然》上,引发了相当的轰动。它的快速计算、低功耗的特性,正如论文中提到的,在可穿戴设备、自动驾驶、工业检测等领域很有应用前景。应该说清华团队的总结是清醒的,在这些领域视频图像信号能低功耗快速处理,会是不错的应用。
但是,一些媒体将指标引申到与GPU对比,认为ACCEL的算力与功耗指标比GPU好得多,甚至暗示ACCEL可能解决先进GPU问题,这就完全误读了。一方面的问题是,GPU有“通用计算”能力,能完成很多复杂任务,而ACCEL只用于视频与图像模式识别,应用领域较窄。但根本的问题是,指标对比方法错误。这种比法对ACCEL来说是只看到优势,没看到代价,对GPU来说是忽视了GPU连续计算的能力。
更深层次的问题是,媒体为什么经常犯这种错误呢?恐怕是因为他们总想搞个大新闻,而忽略了提高知识水平。
【三大指数集体低开 创业板指跌近1%】沪指低开0.66%,深成指低开0.86%,创业板指低开0.97%,算力芯片、智慧灯杆、通感一体化等板块指数跌幅居前
2024-08-02 13:07:29三大指数集体低开在9月10日的凌晨1点,苹果的发布会拉开了帷幕。发布会上,苹果揭晓了其最新的A18芯片,这款芯片采用了先进的3纳米工艺制造,将首次装载于iPhone16系列之中
2024-09-10 08:50:04苹果A18芯片发布:CPU提升30%12月14日,2024科学家创新大会在雄安召开。会上,多位院士专家讨论了遥感产业的未来发展,认为推动算力“上天”将成为产业未来发展的大趋势
2024-12-17 02:16:45我国将构建天地一体化算力网络2024中国算力大会将于9月27日至29日在河南郑州举行,华为将参与此次大会,主题定为“共赢算力新时代”
2024-09-25 09:12:00华为将参加2024中国算力大会