水的第二临界点?
在某些层面上,水具有多种不同的形式,这并不奇怪。取决于你观测的压强和温度,水可以是固态、液态或气态的。在海平面,水在100°C时转化为蒸汽,但是在气压较低的高海拔地区,水会在更低的温度下沸腾——时间是省下来了,但是你的茶也被毁掉了。
在绝大多数情况下,液态和气态是分开的。然而,随着温度和压强的增加,情况开始发生改变。当气体被压缩到一定程度时,它的行为开始更像是液体;而当液体被加热,它也会趋近于气体的行为。当压强或温度足够高,会到达一个被称为“临界点”的微妙平衡点,在这一点你无法区分你看到的到底是哪一态。而略微降低压强或温度,水就会回到液态或气态。
这也是两种液体故事的开端。首先忽略压强,几乎所有物质在高温下都有一个气相和液相交汇的临界点,但是少数材料在低温下还有一个神秘的第二临界点。比如,如果你在适当条件下冷却液态硅和锗,它们可以转化成两种不同密度的液体:原子组成相同,但是不同的结构赋予了它们不同的性质。
尽管它们也很奇怪,但除了学术上的用途,这些第二临界点并没有引起太多关注。如果你不是专门研究液态硅的,这一领域可能不会引起你的注意。
1992年,波士顿大学Peter Poole 和Gene Stanley领导的团队改变了这一局面。他们被一个宣称水的密度在低温下存在涨落的试验所吸引:水的温度越低,密度涨落越明显。这和所有的理论预言都背道而驰。一般而言,物质温度越低,密度涨落越小。
为了探明究竟发生了什么,Poole、Stanley和他们的合作者模拟了水过冷的过程,他们小心地将水降温,使其低于凝固点而仍然保持液态。他们的计算机模拟证实了水在过冷态的密度涨落行为,而且随着温度降低,涨落确实会增大。一些有趣的机制一定在起着作用。