低错误率很重要,因为要想构建功能完备、大规模、通用、容错的量子计算机,需要较长的相干时间和较低的错误率。
量子体积是衡量量子霸权(Quantum Advantage, 又称量子优势) 进展的一个基本性能指标,在这一点上,量子应用程序带来了超越经典计算机本身能力的重大、实际的好处。
接下来,详细阐述“量子体积”的概念和意义。
IBM对Q System One进行了详细的基准测试,并在博客中公布IBM Q Network系统“Tokyo”和“Poughkeepsie”以及公开发布的IBM Q Experience系统“Tenerife”的一些性能数据。
特定量子计算机的性能可以在两个层面上表示:与芯片中基础量子位相关的度量,我们称之为“量子器件”,以及整体系统性能。
下表比较了四个最近的IBM Q系统中量子器件的基本指标:
IBM Q System One的性能可以体现在测得的一些最优性能/最低错误率数字中。平均两个量子比特门误差小于2%,最佳门错误码率小于1%。
IBM的设备基本上受到相干时间的限制,对于IBM Q System One来说平均为73μs。
平均两比特率误差率在相干极限的两倍之内(1.68倍),该极限即由量子位T1和T2设定的理论极限(IBM QSystem One平均为74μs和69μs)。这表明IBM的控件引起的误差非常小,已经接近该器件上最高的量子比特保真度。
量子摩尔定律:为了实现量子优势,量子体积需要每年至少翻一番
为了在本世纪20年代实现量子优势,需要每年至少将“量子体积”增加一倍。
IBM的五量子比特设备Teumife的量子体积是2017年首次通过IBM Q Experience量子云服务提供的,目前的IBM Q 20-量子位的高端设备的量子体积为8。最新结果表明,IBM Q System One性能已经超过16量子体积。自2017年以来,IBM Q团队每年都实现了量子体积的倍增。
下面是一张量子系统开发路线图,以量子体积为衡量标准,量子系统计算力每年增长一倍。
有趣的是,其实可以将上图与Gordon Moore在1965年4月19日提出这张著名的“摩尔定律”图表进行比较: