“这种试验的目的之一,就是验证着陆制导与控制算法的可行性。”刘新福介绍,比如“蚱蜢”火箭曾专门进行侧向机动试验,让火箭飞到一定高度的同时横向机动一定距离,然后让火箭返回发射点。后来“猎鹰9”号火箭实际回收任务中在着陆段确实有明显的横向机动过程,“蚱蜢”试验在一定程度上仿真了这一情况,并证明着陆制导与控制算法能够满足横向机动要求。前期进行的“直上直下”的回收试验,技术难度则相对低不少。
“此外,火箭试验过程中的速度变化情况也很关键。”刘新福补充,如果火箭基本上匀速缓慢着陆,这样的试验难度相对较低,也不符合实际的飞行情况。此外,火箭着陆要同时精确控制位置和速度,当高度降为零时,速度也要几乎降到零,而且几乎没有修正的机会,任何悬停都会导致燃料的浪费,这样的任务采用离线轨迹跟踪方法很难实现。
刘新福指出,难度比较高的试验方式可以是火箭飞起来后进行大范围横向机动并精确着陆,制导算法需在线实时计算出“燃料最优”的着陆轨迹及相应的控制量,然后控制算法跟踪该轨迹实现着陆,必要时该着陆轨迹需在线重新规划。这种情况下对该轨迹计算的可靠性与实时性提出了极高的要求,且火箭速度较大并一直变化。如Xombie火箭的飞行试验中最大横向速度高达30米/秒(即每小时108公里),最大下降速度也高达20米/秒。最省燃料对火箭回收也很重要,因为预留的燃料越少,火箭的运载能力损失越小。
(科技日报北京5月6日电)