中华网

设为书签Ctrl+D将本页面保存为书签,全面了解最新资讯,方便快捷。
军事APP
当前位置:新闻 > 国际新闻 >

科普:“抓拍”生命分子的高清照片——解读2017诺贝尔化学奖成果(2)

科普:“抓拍”生命分子的高清照片——解读2017诺贝尔化学奖成果(2)
2017-10-04 23:56:52 新华网

20世纪80年代初,工作于欧洲分子生物学实验室的雅克·杜博歇提出了“急速冷却”方案,奠定了低温冷冻电子显微术样本制备与观察的基本技术手段。冷冻可以对样本起到保护作用,但通常的冷冻过程中,样本里的水会结成冰晶,可能使物质结构发生改变。更重要的是,冰晶会“喧宾夺主”,使电子发生强烈衍射,干扰观测。杜博歇用液氮对生物大分子溶液薄膜进行瞬间冷冻,使水来不及结晶而是形成无定形的“玻璃态”,就不会产生衍射。

电子显微镜观测的样本通常是只含一层分子的薄膜,可以视为二维的。对大量散布的同一种分子拍摄二维图像,再把这些图像整合起来,就可以得到该分子的三维图像。20世纪70年代,在纽约沃兹沃思研究中心工作的约阿希姆·弗兰克开始进行这种“三维重构”的理论研究,开发出了多种数学工具和图像处理方法。

1990年,英国剑桥分子生物学实验室的理查德·亨德森小组报告了他们对一种色素蛋白进行的三维重构,这项成果是低温冷冻电子显微术的重要里程碑,证明“冷冻样本-二维成像-三维重构”的确可以得到高分辨率的三维图像。它标志着一种研究生物大分子结构的新方法已经成形,其思路与X射线晶体学迥异,可以给生物体内溶液中、处于工作状态的分子“抓拍”快照。

不过此后相当长时间里,低温冷冻电子显微术的精度都不太高,无法与X射线晶体学相比。这里既有观测手段的原因,也有计算机发展水平的限制。

近几年来,传统的电子显微术照相机被可以直接检测电子的设备取代,解决了图像转换导致细节丢失的问题,这个重大进展也是亨德森的贡献。辅以新的高分辨率图像处理算法,以及突飞猛进的计算机运算能力,低温冷冻电子显微术的“高清时代”终于来临,例如2016年发布的谷氨酸脱氢酶结构,分辨率达到了1.8埃(1埃等于10的负10次方米)。

关键词:

相关报道:

    关闭
     

    相关新闻