颜水成表示,面对双胞胎或者整容前后等特殊情况,机器能否识别,要看具体情况。比如整容幅度过大,机器无法识别是有可能的。此外,脸部信息也会随着年龄增长而改变。如果到了机器无法识别的程度,使用者只需去系统更新脸部照片就可解决。
为了提高识别率,不少应用场景都需要用户采用除人脸识别技术外的双重验证。陈继东表示,交叉验证方式进一步提升识别率,即使是双胞胎也“判若两人”。在金融等对误识别率容忍极低的领域中,单一识别要素即使精准度再高仍然会有漏网之鱼,因此需要结合多因子综合验证。目前人脸识别准确率已远超肉眼,而且有活体检测算法来判断采集到的人脸信息是否为照片、视频等冒充。“即便出现账户被冒用的极小概率事件,支付宝也会通过保险公司全额赔付。”
疑惑三:用户隐私如何保护?
有专家指出,人脸特征与指纹、虹膜相比,是一个具有弱隐私的生物特征。例如,很多人都会发自拍照,也是相对公开的特征。如何保证用户数据安全尤为关键。
据媒体报道,在一个名为“你的脸就是大数据”的项目中,俄罗斯摄影师叶戈尔·茨韦特科夫在圣彼得堡用了6周时间拍摄100名地铁乘客的人脸照片,之后利用人脸识别工具比对俄罗斯最大社交网站VK(VKontakte)上的5500万用户,找到了大约70名乘客的个人资料。
如何防范类似的隐私泄露风险?旷视科技副总裁谢忆楠表示,旷视在采集到照片后会对照片进行脱敏处理,只提取照片特征,而非照片本身,即使这些特征在传输过程中被窃取,也无法还原出照片,过程是不可逆的。
陈继东说,目前支付宝已经对人脸识别技术进行了加密、脱敏的技术防范,可以将人脸信息变成一个不可逆的数字信息,不能还原、比对。
苹果方面介绍,其所有保存的面容信息都被保护在安全隔区内,以确保数据安全无虞。同时,所有处理都在设备上进行,不会发生在云端,以充分保护用户隐私。面容ID只有在用户注视iPhone X时才会为它解锁,并采用特别设计,可防止被照片或面具假冒的人脸欺骗。
相关行业标准有待完善
专家普遍认为,人脸识别技术的市场潜力巨大,技术要求高安全性、高准确率、高可用性、高实时性,但目前人脸识别技术还没有一个行业标准,用户隐私安全也亟待保障,建议制定并完善行业标准。