据统计,目前世界上已有150多个国家和地区发生地面沉降,包括美国、日本、墨西哥、荷兰和意大利等。地面沉降已经成为一个全球性的地质环境问题。
自从20世纪60年代以来,随着地下水开采量的不断增加,北京市地面沉降不断加剧,目前已经形成了东郊八里庄—大郊亭、东北郊—来广营、昌平沙河—八仙庄、大兴榆垡—礼贤和顺义平各庄5个沉降区。特别是1999年—2007年连续9年干旱期间,大量开采地下水,进一步加剧了地面沉降的发展。最新的遥感监测显示,北京局部地区的沉降中心速率达到11厘米/年。
因此,在南水北调、京津冀一体化背景下,迫切需要揭示区域地面沉降驱动机理及灾变规律,实现区域地面沉降科学调控和重大工程防灾减灾,促进京津冀地区经济社会可持续发展。
沉降监测不再“盲人摸象”
对于地面沉降的研究,我国多个院所机构先后开展过大量工作,并取得丰硕的成绩。传统测量方法是通过大面积精密水准测量和少量分层标获得的。“这些传统监测手段往往是沿路铺设,虽然精度高,但非常费时费力,而且只知道一个点的情况。”首都师范大学区域地面沉降研究团队成员朱琳教授说。
分析清楚成因机理和灾变模式,再去指导工程防灾与规划,就不再是单一学科视角处理问题,而是有预见性的“对症下药”。
如今遥感技术发展迅速,不同平台、不同模式的卫星可以全天时对地进行观测。能不能将传统监测方法和日新月异的遥感卫星对地观测技术结合起来?能不能将遥感技术、水文地质和土力学等学科整合起来研究,实现学科交叉?
在首都师范大学良好的科研平台支撑下,项目团队通过具有遥感、水文和地质等不同专业背景成员之间的密切合作,以及与北京市水文地质大队等单位的产学研用协同创新,开展多学科交叉研究。
其中,通过重力卫星提供区域水文变化,为课题组提供了研究方向。重力卫星以其独特的视角,是目前唯一能够直接观测地下水储量变化的遥感手段。2002年发射的GRACE是首次实现用低低卫卫跟踪模式测量地球重力场的重力卫星,由两颗低轨卫星组成。它就像“一杆秤”,当卫星飞过重力异常区域时,K波段微波测距系统通过测量两颗卫星间的距离和距离变化率来“秤”出地球质量的变化。在华北平原,这种地球质量的变化主要是由于地下水消耗引起的。