来源:央视新闻
与之前神舟十号的绕飞不同,此次货运飞船绕飞是一次全自动绕飞。即当绕飞指令发出,飞船上制导导航与控制系统的计算机便开始自主规划出最优绕飞轨迹,自主进行变轨控制,自动进行姿态机动,不需要地面人员干预。
“如果把神舟十号的绕飞比作是技术人员‘领着’航天器走路,那么此次货运飞船的绕飞则是技术人员‘看着’航天器独立走路”。航天五院天舟一号副总设计师张强说。
第三次交会对接:我国首次快速交会对接
在任务末期,天舟一号还将进行一次“以快制胜”的交会对接试验。同以往神舟飞船交会对接需要大约2天时间相比,天舟一号将进行快速交会对接试验,将验证从入轨到交会对接成功,仅需要6个小时左右的系列支撑技术。
来源:央视新闻
这一技术一旦验证成功,将大大缩短航天员在飞船上狭小空间中滞留的时间,减少航天员不必要的体力与精力付出;可以保障科研用品,特别是生物制剂等无法经历长期运输的货品尽快送达空间站。尤其在未来载人空间站等航天器突遇紧急情况时,快速交会对接可以快速地对故障实施抢修与紧急救援等工作,极大地保证航天员生命安全。
为了练就“快、准、好”的交会对接秘籍,航天五院科研人员突破了航天器自主导航测轨、定轨、自主快速制导等技术,将复杂的测定轨算法和远距离导引技术工程化,把原来远距离导引段需要地面干预的工作交由航天器的星上计算机自主进行。在飞船入轨后,所有的测定轨、制导律计算、控制实施策略等均由飞船自主计算,无需地面干预,几个小时就可以完成交会对接任务。
交会对接技术,不局限于载人空间站建设,在中国进行遥远深空探测任务中也将发挥巨大作用。
航天五院航天器设计专家邵立民说,“交会对接技术是一种通用技术。今年除了服务载人航天工程外,还将支撑即将开展的嫦娥五号月球采样返回任务。未来,交会对接技术成果还将广泛应用于诸如探月工程等的多飞行器组合等方面,前景非常广阔。”
第三篇丨天舟一号“新技术”看点
文丨伍轩
这一系列重大的任务完成,离不开方方面面的技术创新
作为我国第一艘货运飞船,也是我国目前为止体积最大、重量最重的航天器,天舟一号货运飞船成功入轨后,将与在轨运行的天宫二号先后进行3次交会对接、3次推进剂在轨补加以及空间应用和航天技术等多领域的实验项目。
天舟一号发射成功,意味着中国已经具备向空间一次性运输大量物资以及太空加油的能力,预示着中国在发展载人空间站的道路上又迈出了坚实的一步。这一系列重大的任务完成,离不开方方面面的技术创新。
特别的“货架”与“货包”
天舟一号是货运飞船,能装相当于自身重量的6吨多货物,上行载货比优于国际现役货运飞船。既要装得多,还要装得好,天舟一号的抓总研制单位——中国航天科技集团第五研究院着实费了一翻功夫。
在天舟一号上,装载着航天五院的科研人员设计的高效承载货架。从表面上看,货架与普通的书架类似,但其细节和构型却大为不同。该货架采用一种基于蜂窝板、碳纤维立梁的梁板预埋结构,形成大量的标准装货单元,结构与货物重量比达到8%,此比例在业内已属领先。
蜂窝板有大量的留空面积用于装货,碳纤维立梁材质超轻且抗变形能力好,这都使货架既能适应传统刚性结构安装,又能适应柔性束缚带的连接承载。经过测试,三个这种结构就可承载一台豪华轿车。
另外,大承载货架结构与密封舱主结构的连接环节也是结构设计的一大亮点。因为密封舱充电后会变形,连接环节采用碳纤维结合铝合金的设计,避免了货架直接与密封壳体相连,相当于有一个桥梁释放了变形产生的力,保障了在轨环境下结构不被破坏。
由于天舟一号要运送的物资中有许多精密仪器设备和宇航员用品,发射段受力大,很怕磕碰。因此,科研人员为货物设计了特殊的包装模式,采用了绑扎方式和内部泡沫的设计。这种“软包装”与传统的硬连接不同,它将货物包裹在泡沫或气囊袋里面,再一起固定在货架上,而不是直接让货物与运载工具的内部货架相连接。“软包装”能够很好的为货物减振,保证货物安全到达太空。
天基测控搭建“太空天路”
此次天舟一号执行任务,我国将首次以天基测控体制为主实施飞行控制。也就是说,将原本在地面或海上设置的对航天器的测量系统“搬”到了天上。这主要依靠航天五院研制的中继终端和宽波束中继测控系统。前者为窄波束,传输效率高,信息量大;后者覆盖范围广。二者互为补充,搭建了从天舟一号到中继卫星再到地面的“太空天路”。
当天舟一号发射成功,中继终端在第一时间开机,与中继卫星实现“太空握手”,建立星间链路。由于终继终端通信通道相对狭窄,飞船在调整姿态进行对接、分离等“技术动作”时,与中继卫星极有可能出现信号中断。这时,宽波束中继测控系统开始发挥作用。
据了解,该系统在接收天线的设计上,采用两组天线“背靠背”的架设在飞船舱外表面上,在飞船调整姿态时,一组天线会因旋转而与中继卫星失联时,另一组天线会主动跟进,与中继卫星取得联系,确保无论天舟一号怎样动,都不会与中继卫星失去联系。
对组合体实现精准控姿
与天宫二号与神舟十一号的组合体相比,此次天舟一号与天宫二号的组合体转动惯量将增加接近50%,将是国内在轨最大、最重的航天器。
按照计划,天宫二号和天舟一号组合体将在轨完成推进剂补加任务。推进剂补加,是开展空间站工程的一项关键任务,是空间站长期运行的前提。而推进剂补加需要稳定的平台,组合体的稳定控制是推进剂补加的前提。
但是,由于质心、惯量变化范围大,推进剂补加的过程,必然将会组合体的飞行产生较大的姿态干扰,这都对航天五院GNC(制导、导航与控制)系统提出了更高的要求。只有控制系统足够智能、稳定,才能适应补加过程中可能出现的各种故障工况。
为了保证组合体在太空的姿态稳定,航天五院研制了200Nms(牛米每秒)控制力矩陀螺(CMG),构建了具备完善的自主故障诊断和重构能力的CMG系统,该系统在实现对组合体稳定控制的同时,可以保证当某一CMG出现异常或故障时,系统可以无缝切换并保证对姿态干扰的程度最小。
即使飞船分离时对接结构解锁分离产生巨大姿态干扰,研制人员仍可以保证对天宫二号的有效控制,并在一分钟之内回归到正常稳定对地飞行状态。同时还可实现飞船在分离和撤离过程中可以一直“盯着”天宫,以防发生碰撞,最大限度地保证了飞船分离和撤离过程中的平稳和安全。
对组合体的控制,将再次验证我国大型变结构航天器控制技术的可靠性,对后续飞行器设计有重要参考意义。
同时,组合体上各设备的运行都需要电力供应,这些能源都依靠太阳的光辉。所以,在绕地运行过程中,为确保组合体上太阳能帆板尽可能多地接受阳光照射,组合体需要持续调整姿态。
五院的设计师优化了帆板实时调速控制算法,减小了帆板跟踪误差,进一步提高了太阳帆板跟踪精度。为了应对组合体长期在轨运行可能面临的太阳方位不好的情况,组合体将在轨实施连续偏航机动,以确保太阳帆板高效跟踪太阳,持续接收来自太阳的能量,保证更长时间的稳定飞行。这为后续空间站建设、组合体更长期的飞行,奠定坚实的技术基础。
天舟一号转运中(来源:中国航天科技集团公司第五研究院)
三维之路提高研制效率
天舟一号是一艘“三维”货运飞船。从设计、到生产检测、再到总装虚拟仿真,首次实现了总体和各分系统、制造厂、总装厂间的全三维协同设计。
全三维协同设计研制模式的核心是设计真实的“数字样机”。“数字样机”好比以往二维设计模式中的一套套图纸,是设计、制造、装配的全部依据,集成了一个产品的所有要素。
三维设计的重点是对数字样机的建设和维护。这个建设和维护过程所对应的是设计师协同设计的环境和流程,从而彻底改变了以往设计师个体设计的工作模式。
以构型布局设计为例,传统模式中,设计人员在二维图纸中进行设备布局、调整、送审。采用全三维数字化设计后,工作效率提高了约50%。货船的管路系统、电缆网、直属件和总装设计采取三维设计后,工作效率提高了约50%;整船的总装详细设计研制周期缩短约45%。
科学管理搭建空中试验平台
空间试验是天舟一号的重要任务之一。被称为“载荷大管家”的空间技术试验分系统,管理着来自五个载荷方、十三个试验项目的四十余台载荷设备。
此次,天舟一号的空间技术试验分系统,分为载荷公用平台和实验项目两部分。其中,载荷公用平台负责向实验项目提供供电、控制、状态采集、信息传输等各类电气接口资源,保障载荷试验在轨顺利开展。
实验项目由在轨试验所需的各类试验设备组成。设计师们规范设计,对试验载荷实施有别于平台产品的差异化管理,兼顾了试验载荷周期短、接口可靠和运行安全的需求,保障各类空间技术试验顺利进行。在无人的情况下,科研人员通过载荷运控方案设计,编制了相应的飞行程序。在实际飞行任务中,用“最强大脑”载荷公用平台控制包括空间应用实验、特殊技术试验、航天技术试验等各类试验项目的开展。