新华网北京11月30日电(王莹)“悟空”卫星在轨运行的前530天共采集了约28亿高能宇宙射线,其中包含约150万25GeV以上的电子宇宙射线。基于这些数据科研人员成功获取了目前国际上最精确的电子宇宙射线探测结果。
在中国科学院27日召开的新闻发布会上,我国暗物质粒子探测卫星“悟空号”首席科学家常进对外宣布了这一重大消息。对于公众普遍关心的暗物质探测话题,这一发现意味着什么?
根据人们已知的物理规律,来自宇宙空间的粒子能谱(能谱指的是粒子数目随能量的变化情况)有其特定的分布,一般是随着能量升高其数目逐渐下降。如果能谱出现异常,便意味着可能有新的物理原因。根据目前理论物理学家的推测,如果暗物质粒子相互碰撞并湮灭,将产生高能电子。那么到空间去精确地探测高能电子能谱,就可以发现暗物质存在的蛛丝马迹。“悟空”的核心使命就是在宇宙线和伽马射线辐射中寻找暗物质粒子存在的证据,并进行天体物理研究。
据常进介绍,与目前国际上其他暗物质空间探测设备如AMS-02、Fermi-LAT相比,“悟空”卫星的电子宇宙射线的能量测量范围有显著提高,拓展了我们观察宇宙的窗口。
记者了解到,“悟空”卫星采用了中国科学院紫金山天文台研究人员自主提出的分辨粒子种类的新探测技术方法,实现了对高能(5GeV-10TeV)电子、伽马射线的“经济适用型”观测。“1GeV=10亿电子伏特,1TeV=1万亿电子伏特。人类眼睛最敏感的可见光的能量约为2电子伏特。‘悟空’卫星在‘高能电子、伽马射线的能量测量准确度’以及‘区分不同种类粒子的本领’这两项关键技术指标方面世界领先,尤其适合寻找暗物质粒子湮灭过程产生的一些非常尖锐的能谱信号。”常进告诉记者。