当前位置:新闻 > 国际新闻 > 正文

华人科学家:爱因斯坦都不敢想象,我们探测到引力波(2)

2016-02-12 10:07:45  知社学术圈    参与评论()人

这些天文学中的观测现象从一个侧面证明了黑洞的存在,但是目前还没法很精确的测定黑洞附近的几何结构。这些黑洞也都是随时间不变的稳定黑洞,它们周围的时空结构,在我们观测的这段时间内是不变的。

引力波

爱因斯坦在1916年就预言了引力波的存在: 他发现自己的方程有一组解,和电磁波的性质类似,以光速传播。但是他在文章里又说(下图中最后一句),因为这个引力波辐射的能量很少,在所有能想得到的情况下,引力波的辐射都可以被忽略。

在一个自由下落的物体参照系中,引力波可以看成是一个“潮汐引力场”。也就是说,距离这个物体越远的物体,它感受到的引力场越大。在自由物体之间,潮汐引力场会引起他们相对位移按比例的变化(也就是“应变”)。引力波的振幅h,通常就用这个应变来代表。

韦伯和他设计的共振棒探测器。引力波驱动铝棒两端振动,从而挤压表面的晶片,产生可测的电压。图片来自:马里兰大学。

虽然引力波这么微弱,但还是没有吓倒勇敢的实验物理学家Joe Weber。他深信,虽然地球上产生的引力波很微弱,宇宙空间中也许有天文现象可以导致足够强的引力波。20世纪60年代末期,Weber开始用共振法测量引力波。具体就是用一个很大的金属物体,利用引力波在物体的谐振频率上引起共振的特点,希望从这个物体的振动中提取引力波的信号。Weber发表了一些实验结果,认为已经发现了引力波。但是很可惜,他的实验没有人可以重复,而理论上也很难论证究竟是什么样的过程发出了这么强烈的引力波信号。但是,Weber的工作激励了一批科学家投身引力波事业。从20世纪70年代起,一批理论和实验物理学家加入了引力波理论研究和实验探测的行列。

MIT的实验物理学家Weiss注意到,引力波对物体之间距离的变化,和物体之间本来的距离成正比。这样的话,如果把物体之间的距离拉的很远,并且把它们做成镜子,然后用激光测距的方法测量镜子之间的距离,就可以成倍的提高对引力波测量的精度。

LIGO的灵敏度和运行

LIGO探测器在1999年最初建成,然后花了5年时间,在2005年到达了设计灵敏度,可以测量在60Hz以上,10kHz以下的引力波,位移变灵敏度达到10^-21。这是什么概念呢?这样的应变,如果是用到从地球到太阳之间的距离,导致的距离变化不超过头发丝的十万分之一。换算到千米量级的臂长,它对检验质量位移的灵敏度可以达到10^-18米,是原子核大小的1/1000!

LIGO为什么可以达到比原子核大小还要小的灵敏度呢?

从光学定位的角度考虑,这是因为LIGO用了很强的激光,并且使用了光学谐振放大的方法。每一个光子,可以对位置进行一个光波长左右的测量。而光子在谐振腔中反复传播100次,就可以测量光波长百分之一的距离变化,也就是10^-8米。如果用多个光子,灵敏度会按光子个数的平方根增加。于是,10^20个光子,就可以达到10^-18米的灵敏度了。

而从原子尺度考虑,则是因为LIGO的光束打在了很多个原子上,这个平均的效应让我们可以测量到比单个原子尺寸更小的位移。在2003到2009年这段时间,LIGO-1采集了一些数据,并且作出了分析。但是在这个数据里面并没有发现引力波。从2009到2015年,LIGO进行了历时6年的升级,从LIGO-1升级到LIGO-2,也就是Advanced LIGO。

关闭